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Proof

A mathematical proof is a (logical) procedure to establish the
truth of a mathematical statement.

Theorem - a true (proven) mathematical statement.

Lemma - a small, helper (technical) theorem.

Conjecture - a statement that has not been proven (but is
suspected to be true)
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Formal proof

Let P = {P1,P2, ...,Pm} be a set of premises or axioms and
let C be a conclusion do be proven.

A formal proof of the conclusion C based on the set of
premises and axioms P is a sequence S = {S1, S2, ..., Sn} of
logical statements so that each statement Si is either:

a premise or axiom from the set P

a tautology

a subconclusion derived from (some of) the previous
statements Sk , k < i in the sequence using some of the
allowed inference rules or substitution rules.
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Substition rules

The following rules make it possible to build �new� tautologies
out of the existing ones.

If a compound proposition P is a tautology and all the
occurrences of some speci�c variable of P are substituted
with the same proposition E , then the resulting compound
proposition is also a tautology.

If a compound proposition P is a tautology and contains
another proposition Q and all the occurrences of Q are
substituted with another proposition Q∗ that is logically
equivalent to Q, then the resulting compound proposition
is also a tautology.
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Inference rules 1

The following rules make it possible to derive next steps of a proof
based on the previous steps or premises and axioms:

Rule of inference Tautology Name

p ∧ q (p ∧ q)→ p simpli�cation

∴ p

p [(p) ∧ (q)]→ (p ∧ q) conjunction
q

∴ p ∧ q

p p → (p ∨ q) addition

∴ p ∨ q

p ∨ q [(p ∨ q) ∧ (¬p ∨ r)]→ (q ∨ r) resolution
¬p ∨ r

∴ q ∨ r

(to be continued on the next slide)
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Inference rules 2

Rule of inference Tautology Name

p [p ∧ (p → q)]→ q Modus ponens

p → q

∴ q

¬q [¬q ∧ (p → q)]→ ¬p Modus tollens

p → q

∴ ¬p
p → q [(p → q) ∧ (q → r)]→ (p → r) Hypothetical

q → r syllogism

∴ p → q

p ∨ q [(p ∨ q) ∧ ¬p]→ q Disjunctive

¬p syllogism

∴ q
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Inference rules for quanti�ed predicates

Rule of inference Name

∀xP(x) Universal instantiation

∴ P(c)

P(c) for an arbitrary c Universal generalization

∴ ∀xP(x)

∃xP(x) Existential instantiation

∴ P(c) for some element c

P(c) for some element c Existential generalization

∴ ∃xP(x)
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Types of proof of implication

Assume that theorem is of the form:

P ⇒ C

(where P = P1 ∧ P2 ∧ ...Pm is the conjunction of premises and

axioms, and C is the conclusion to be proven)

The proof can have various forms, e.g.:

direct proof (using P to directly show C)

indirect proof

proof by contraposition (proving contrapostion ¬C ⇒ ¬P
proof by contradiction (reductio ad absurdum) (showing
that P ∧ ¬C leads to false (absurd))

Another proof scheme is �proof by cases� (when di�erent cases
are treated separately).
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Example of a direct proof

Theorem: if n is odd integer then n2 is odd.
(what is the mathematical form of the above statement?)

(actually more formally it is:
∀n ∈ Z (∃k ∈ Z n = (2k + 1))→ (∃m ∈ Z n2 = (2m + 1)))
n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 (thus
m = (2k2 + 2k))

Another example: �if m and n are squares then mn is square�
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Example of direct proof

�Sum of two rationals is rational�

x is rational if there exist two integers p,q so that x = p/q
(it is easy to use basic algebra to show that x + y is also
rational)
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Logical identities useful in proving implications

Identity: Name:

(p → q)⇔ (¬q → ¬p) contraposition

(p → q)⇔ (¬p ∨ q) implication as alternative
(p → q)⇔ ¬(p ∧ ¬q) implication as conjuction

[p → (q ∧ r)]⇔ [(p → q) ∧ (p → r)] splitting a conjunction
(p → q)⇔ [(p ∧ ¬q)→ F ] reductio ad absurdum

[(p ∧ q)→ r ]⇔ [p → (q → r)] exportation law
(p ↔ q)⇔ [(p → q) ∧ (q → p)] bidirectional as implications

The last identity gives a schema for proving equivalences.
The above identities serve as a basis for various types of proofs, e.g.:

indirect proof by contraposition (by proving the negation of the
premise from the negation of the conclusion)

indirect �vacuous proof� (by observing that the premise is false)

indirect �trivial proof� (by ignoring the premise)

indirect proof �by contradiction� (by showing that the negation
of the conclusion leads to a contradiction)
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Example of the need for indirect proofs

Prove: �for any integer n: if 3n+2 is odd then n is odd�

(how to prove it with a direct proof?)
(it is not easy to construct a direct proof, but an indirect proof
can be easily presented)
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Example of a proof by contraposition

Prove: �for any integer n: if 3n+2 is odd then n is odd�
(example of indirect proof):

(by contraposition): Assume n is even: ∃k ∈ Z n = 2k , which
implies: 3n + 2 = 3(2k) + 2 = 2(3k) + 2 = 2(3k + 1) = 2(l)
(where l = 3k + 1) what would imply that the number 3n+ 2 is
also an even number (contraposition)
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Example of a vacuous proof

(when the hypothesis of the implication is false)

de�ne a predicate P(n): if n > 1 then n2 > n (n ∈ Z )
Prove P(0).
The hypothesis n > 1 is false so the implication is automatically
true.
Vacuous proofs are useful for example for proving the base step
in mathematical induction1

1a proof technique that will be presented later
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An example of a trivial proof

(when the the hypothesis of the implication can be ignored)

de�ne the predicate: P(n): for all positive integers a,b and
natural number n it holds that: a ≥ b ⇒ an ≥ bn.
Prove P(0)
a0 = 1 = b0 so that the conclusion is true without the
hypothesis assumption
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Example of a proof by contradiction

�
√
2 is irrational�

(we use the fact that each natural n > 1 is a unique product of
prime numbers)
Suppose that it is not true, i.e.

√
2 = a/b for some a, b ∈ Z

and a, b have no common factors (except 1).
2 = a2/b2 so 2b2 = a2, so a2 is even (divisible by 2). But this
implies that b must also be divisible by 2, what contradicts the
assumption.
Thus negating the thesis leads to a contradiction.
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Proofs of existential statements

If the conclusion is of the form �there exists some object that
has some properties� (∃), the proof can be:

constructive (by directly presenting an object having the
properties or presenting a sure way in which such object
can be constructed)

unconstructive (without constructing or presenting the
object)
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Example of a constructive proof

�There exists pair of rational numbers x,y so that xy is
irrational�
Proof (constructive): x = 2, y = 1/2



Discrete
Mathematics

(c) Marcin
Sydow

Proofs

Inference
rules

Proofs

Set theory
axioms

Example of a non-constructive proof

�There exist irrational numbers x and y so that xy is rational.

Proof: (use the premise that
√
2 is irrational that was proven

before) Let's de�ne x =
√
2
√
2
. If x is rational, this ends the

proof. If x is irrational, then x
√
2 = 2 so that we found another

pair.
Notice: we do not know which case it true, but we've proven
that at least one pair must exist!
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Proofs of universal statements

If the conclusion to be proven starts with the universal
quanti�er ∀, we can disprove it (prove it is false) by �nding a
counterexample (it is an allowed value of the quanti�ed
variable that falsi�es the statement).

To make a positive proof of a universal statement, if the
domain is in�nite, it is not possible to prove it for all cases.
Instead, the negation of it can be falsi�ed, for example.
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Proving lists of equivalent statements

Some theorems have the form:

�The following statements are equivalent: S1, S2, ..., Sn.�

A typical proof of such theorems is usually in the form of the
following sequence:
S1 ⇒ S2, ..., Sn−1 ⇒ Sn, Sn ⇒ S1

Example of such theorem from graph theory:

The following conditions are equivalent:

graph G is a tree

graph G is acyclic and connected

graph G is connected and has exactly |V | − 1 edges

each edge in G is a bridge

each pair of 2 vertices in G is connected by exactly 1 simple path

adding any edge to G makes exactly 1 new cycle
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Example: Proving set inclusion and set equality

To prove that some set is included in another set: A ⊆ B it is
enough to use the de�nition of inclusion. Thus, it is enough to
prove the implication:
∀x x ∈ A⇒ x ∈ B (where x is any element of the universe)

To prove equality of two sets: A = B it is enough to prove two
set inclusions: A ⊆ B and B ⊆ A, thus it is enough to prove the
two implications of the above form.
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set inclusions: A ⊆ B and B ⊆ A, thus it is enough to prove the
two implications of the above form.
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Russels antinomy

There does not exist the set of all sets.2

Russel's antinomy:
Z = {x : x /∈ x}

Does Z belong to itself?
x ∈ Z ⇔ x /∈ x

Z ∈ Z ⇔ Z /∈ Z

(a contradiction)
Thus the existence of the set Z led to a contradiction.

2we call the family of all the sets class
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Basic Axioms of Set Algebra

Primitive concepts:

element of set

the relation of �belonging to the set� (x ∈ X )

1 Uniqueness Axiom (Axiom of extensionality): If the sets A
and B have the same elements then A and B are identical.

2 Union Axiom: for arbitrary sets A and B there exists the
set whose elements are all the elements of the set A and all
the elements of the set B (without repetitions) and no
other elements

3 Di�erence Axiom: For arbitrary sets A and B there exists
the set whose elements are those and only those elements
of the set A which are not the elements of the set B.

4 Existence Axiom: There exists at least one set.

(intersection, the existence of the empty set and all the basic
set algebra theorems can be derived from the above axioms)
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More Set Theory Axioms

More advanced set theory needs additional axioms:

5: For every propositional function f(x) and for every set A
there exists a set consisting of those and only those
elements of the set A which satisfy f(x)

{x : f (x) ∧ x ∈ A}

6: for every set A there exists a set, denoted by 2A, whose
elements are all the subsets of A

7 (Axiom of Choice): For every family R of non-empty
disjoint sets there exists a set which has one and only one
element in common with each of the sets of the family R.3

(now axioms 2,3 are super�uous as they can be derived from
the axioms 1 and 5-7)

3The axiom of choice is very strong and implies some non-intuitive

theorems and is questioned by some mathematicians
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The role of axioms

The introduction of the axioms of the set theory (at the beg. of
the XX. century) eliminated the paradoxes and antinomies and
cleaned the fundamentals of the theory.

Similar axiomatic approach is possible (and takes place) in other
mathematical theories (e.g. theory of natural numbers,
geometry, etc.)
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Example tasks/questions/problems

provide the de�nition of formal proof

describe at least 6 di�erent inference rules

describe the following proof schemas: direct proof, proof
by contraposition, reductio ad absurdum (proof by
contradiction)

prove the following small theorems:

�If an integer n is odd, then n2 is also odd�
�If n is an integer and 3n + 2 is odd, then n is odd�
�At least four of any 22 days must fall on the same day of
the week�

in each case, try the following schemas (in the given
order): direct proof, proof by contraposition, reductio ad
absurdum (proof by contradiction).
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Thank you for your attention.
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