Exploring Linguistic Features for Web Spam Detection A Preliminary Study

Jakub Piskorski¹ Marcin Sydow² Dawid Weiss³

¹ Joint Research Centre of the European Commission, Ispra, Italy

² Web Mining Lab, Polish-Japanese Institute of Information Technology, Warsaw, Poland

³ Institute of Computing Science, Poznan University of Technology, Poland

2 Computation

3 Preprocessing

4 Attribute pre-Selection

5 Conclusions

Background

There is a recent interest in machine-learning approach to Web spam detection.

The main motivations are:

- complexity: too many factors to consider
- scale: too much data to analyse by humans
- need for adaptivity: a dynamic problem (arms race)

Previous work on content analysis, etc.

Various content-based factors have been already studied:

- statistic-based approach (Fetterly et al. '04)
- checksums, term weighting (Drost et al. '05, Ntoulas et al. '06)
- blog spam detection by language model disagreement (Mishne et al. '05)
- auto-generated content (Fetterly et al. '05)
- HTML structure (Urvoy et al. '06)
- commercial attractiveness of keywords (Benczur et al. '07)

Previous work on content analysis, etc.

Various content-based factors have been already studied:

- statistic-based approach (Fetterly et al. '04)
- checksums, term weighting (Drost et al. '05, Ntoulas et al. '06)
- blog spam detection by language model disagreement (Mishne et al. '05)
- auto-generated content (Fetterly et al. '05)
- HTML structure (Urvoy et al. '06)
- commercial attractiveness of keywords (Benczur et al. '07)

Also other dimensions of data were explored: link-based, query-log based, combined, etc.

Previous work on content analysis, etc.

Various content-based factors have been already studied:

- statistic-based approach (Fetterly et al. '04)
- checksums, term weighting (Drost et al. '05, Ntoulas et al. '06)
- blog spam detection by language model disagreement (Mishne et al. '05)
- auto-generated content (Fetterly et al. '05)
- HTML structure (Urvoy et al. '06)
- commercial attractiveness of keywords (Benczur et al. '07)

Also other dimensions of data were explored: link-based, query-log based, combined, etc.

What about linguistic analysis of Web documents?

Motivation

Linguistic analysis:

- have not been used before in the Web spam detection problem (except some corpus-based statistics)
- proved successful in deception detection in textual human-to-human communication (Zhou et al. "Automating Linguistics-based Cues for detecting deception of text-based Asynchronous Computer-Mediated Communication")

Linguistic Analysis

We applied light-weight linguistic analysis to compute new attributes for Web spam detection problem.

Two different NLP software tools were used:

- Corleone (developed at JRC, lspra)
- General Inquirer (www.wjh.harvard.edu/~inquirer)

Why only a *light-weight* analysis?

- computationally cheap
- more immune in the context of the open-domain nature of the Web documents

General linguistic, document-level analysis without any prior knowledge about the corpus.

Contributions

- the two Yahoo! Web Spam Corpora of human-labelled hosts were taken
- 2 the two different NLP software tools were applied to them
- Over 200 linguistic-based attributes were computed and made publicly available for further research. Info: http://www.pjwstk.edu.pl/~msyd/linguisticSpamFeatures.html
- over 1200 histograms were generated and analysed (also available)
- the most promising attributes were preliminarily selected with the use of 2 different distribution-distance metrics

Corleone-based attributes, examples

Type:

•

	Levical validity	_	# of valid word forms		
	Lexical validity	_	# of all tokens		
	Taxt like fraction	_	# of potential word forms		
	Text-like fraction	=	# of all tokens		
Diversity:					
	Lovical diversity	_	# of different tokens		
	Lexical diversity	_	# of all tokens		
	Contant divarsity	_	# of different nouns & verbs		
	Coment unreisity	_	# of all nouns & verbs		
	Suptrational divorcity		# of different POS n-grams		
	Symactical diversity	_	# of all POS n-grams		
	Syntactical entropy	=	$-\sum_{g\in G} p_g \cdot \log p_g$		

General Inquirer attribute groups

- 'Osgood' semantic dimensions
- pleasure, pain, virtue and vice
- overstatement/understatement
- language of a particular 'institution'
- roles, collectivities, rituals, and interpersonal relations
- references to people/animals
- processes of communicating
- valuing of status, honour, recognition and prestige

- references to locations
- references to objects
- cognitive orientation
- pronoun types
- negation and interjections
- verb types

- adjective types
- skill categories
- motivation
- adjective types
- power
- rectitude
- affection
- wealth
- well-being
- enlightenment

Map-reduce jobs (Hadoop) for processing (40 CPU cluster).

	2006	2007
pages	3 396 900	12533652
pages without content	65 948	1616853
pages with HTTP/404	281 875	230 120
TXT SQF (compressed file, GB)	2.87	8.24

Reducing noise

- Removed binary content-type pages.
- Different "modes" of page filtering:
 (0) < 50k tokens, (1) 150–20k tokens, (2) 400–5k tokens.

Reducing noise

- Removed binary content-type pages.
- Different "modes" of page filtering:
 (0) < 50k tokens, (1) 150–20k tokens, (2) 400–5k tokens.

Discriminancy Measures

$$absDist(h) = \sum_{i \in I} |s_i^h - n_i^h|/200$$
(1)

$$sqDist(h) = \sum_{i \in I} (s_i^h / max_h - n_i^h / max_h)^2 / |I|$$
 (2)

The Most Promising Features (Corleone)

The most discriminating **Corleone** attributes wrt *absDist* and *sqDist* metric.

Corleone (absDist)	2007	2006	Corleone (sqDist)	2007	2006
Passive Voice	0.263	0.273	Syn. Diversity (4g)	0.053	0.054
Syn. Diversity (4g)	0.255	0.245	Syn. Diversity (3g)	0.050	0.067
Content Diversity	0.234	0.331	Syn. Diversity (2g)	0.037	0.036
Syn. Diversity (3g)	0.230	0.253	Content Diversity	0.032	0.065
Pronoun Fraction	0.224	0.261	Syn. Entropy (2g)	0.029	0.026
Syn. Diversity (2g)	0.221	0.232	Lexical Diversity	0.026	0.043
Lexical Diversity	0.213	0.262	Lexical Validity	0.024	0.033
Syn. Entropy (2g)	0.208	0.179	Pronoun Fraction	0.024	0.031
Text-Like Fraction	0.188	0.184	Text-Like Fraction	0.023	0.017

Corleone, Syntactical diversity mode-1 filtered, 2006 and 2007 data set

- 4-grams
- different Y scale to illustrate shape
- 2006 (left), 2007 (right)
- results very similar

The most discriminating **General Inquirer** attributes according to *absDist* and *sqDist* metric.

GI (absDst)	2007	2006	GI (sqDist)	2007	2006
WltTot WltOth Academ Object EnITot Econ@ SV	0.287 0.285 0.270 0.255 0.249 0.228 0.206	0.346 0.341 0.263 0.282 0.247 0.356 0.260	leftovers EnlOth EnlTot Object text-length ECON Econ@ WitTot Witfot	0.0150 0.0085 0.0082 0.0073 0.0056 0.0038 0.0038 0.0038	0.0128 0.0072 0.0118 0.0086 0.0048 0.0034 0.0031 0.0027 0.0024

Leftovers attribute, General Inquirer, mode-1 filtered, 2006 data set:

Conclusions and Further Work

Positive outcomes:

• Features showing different characteristic between normal and spam classes: content diversity, lexical diversity, syntactical diversity, ...

Limitations and problems:

- Spam pages generated from legitimate content.
- Graphical spam (images overlaid over legitimate text).
- Multi-lingual pages.

Further steps:

 new attributes should be tested directly in the Web classification task

The Data sets

There are 4 data sets available ({'06, '07} \times {Corleone, GI}):

- the data sets are document-level
- the assigned labels are host-level
- for '07 corpus the labels are taken from the training set + merged with '06 labels
- easy, line-record, tab-separated ASCII format
- the histograms are also available

Data sets: \rightarrow

http://www.pjwstk.edu.pl/~msyd/lingSpamFeatures.html

Enquiries: →
msyd@pjwstk.edu.pl
jpiskorski@googlemail.com
dawid.weiss@cs.put.poznan.pl

Thank you for your attention.