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NP-hard

Multiple ways to deal with NP-hard problems:

considering special cases

fast heuristics (local search, genetic algorithms, etc.)

fast, exponential algorithms

randomised algorithms

approximation algorithms
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NP-optimisation problem (a bit more formally)

NP-optimisation problem Π consists of:

set of valid instances, DΠ, recognisable in polynomial time
(assume: all the numbers are rational, and encoded in
binary, |I | denotes the size of encoded instance I , in bits).

each instance I ∈ DΠ has a set of feasible solutions,
SΠ(I ) 6= ∅. Each feasible solution s ∈ SΠ(I ) is of length
bounded by polynomial of |I |. Moreover, there is a
polynomial algorithm that given a pair (I , s) decides
whether s ∈ SΠ(I )

there is a polynomially computable objective function objΠ
which assigns a nonnegative rational number to each pair
(I , s) (an instance and its feasible solution).

Π is speci�ed to be either minimisation or maximisation

problem
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NP-optimisation problem, cont.

Optimal solution of an instance of a minimisation
(maximisation) problem is a feasible solution which achieves the
minimum (maximum) possible value of the objective function
(called also �cost� for minimisation or �pro�t� for
maximisation).

OPTΠ(I ) denotes optimum objective function value for an
instance I

Decision version of an NP-optimisation problem I : a pair (I ,B),
where B ∈ Q and the decision problem is stated as �does there
exist a feasible solution to I of cost ≤ B , for minimisation
problem I � (or, analogously �of pro�t ≥ B�, for a maximisation
problem)



Introduction
to Approxi-
mation

Algorithms

Marcin
Sydow

Introduction

Exponential
Algorithms

Local Search

Combinatorial
Appr. Algs.

Vertex Cover

Set Cover

Steiner Tree

TSP

Linear Pro-
gramming

Rounding

LP-Duality

Primal-Dual
Schema

Dual Fitting

Extending the de�nition of NP-hardness for
optimisation problems

Decision version can be �reduced� to optimisation version. (i.e.
polynomial algorithm for optimisation version can obviously
solve the decision version)

NP-optimisation problem can be called NP-hard if its decision
version is NP-hard.
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Example: Vertex Cover

Given a graph G = (V ,E ), �nd a subset of its vertices V ′ ⊆ V

that:

�covers� all edges, i.e. each edge e ∈ E is incident with at
least one vertex from V ′ (feasibility constraint)

|V ′| is minimum possible (cost function to be minimised)

VC is NP-complete (e.g. reduction from 3-SAT via Independent
Set)

Solving NP-hard problems on special cases may be easy.
E.g. VC on cycles.
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Fast Exponential Algorithms
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Finding small VC for �xed k

If k is �xed (e.g. k=3 or 10) then VC is has an algorithm that
is polynomial of n:
try all k-subsets of V (there are nk

(n−k)! such) and check each (in

time O(kn)) if it forms a VC. (total: O(knk+1) - a polynomial
of n)
However, such a polynomial-time algorithm is infeasible even for
moderate values of k and n (e.g. n= 1000, and k=10).
Interestingly, for small k there is a exponential-time algoritm
for VC that is more e�cient
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Two observations

If G has a vertex cover of size at most k, then G has at most
k(n − 1) edges.

Lemma

Let G = (V ,E ) be a graph and (u, v) ∈ E. G has a vertex

cover of size at most k if at least one of the graphs G \ {u} or

G \ {v } has a vertex cover of size at most k-1.

The above two observations lead directly to a recursive

algorithm for VC that is feasible for small values of k.



Introduction
to Approxi-
mation

Algorithms

Marcin
Sydow

Introduction

Exponential
Algorithms

Local Search

Combinatorial
Appr. Algs.

Vertex Cover

Set Cover

Steiner Tree

TSP

Linear Pro-
gramming

Rounding

LP-Duality

Primal-Dual
Schema

Dual Fitting

Recursive algorithm for VC

If G contains no edges, then the empty set is a VC
If G contains more than kn edges than it has no k-node VC
Else let e = (u, v) be an edge of G
Recursively check if either G \ {u} or G \ {v } has a VC of size at
most k-1.
If neither of them does, then G ha no k-node VC
Else, one of the (say, the �rst one) has a (k − 1)-node VC, call
it T
In such case, T ∪ {u} is a k-node VC for G
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Time complexity of the algorithm is O(2k · kn).
The algorithm has exponential time but only in k1.
Thus, for small k, it is more e�cient than polynomial-time
algorithm.
(e.g. k=10 and n=1000).
However, for higher values of k this approach is infeasible.

1Thus the problem is called �xed-parameter tractable (FPT)
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Local Search Heuristics
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Local Search Heuristics

For feasible solution set S, de�ne neighbourhood relation. Walk
from neighbour to neighbour (by small modi�cations) to �nd
local optimum.

Examples:

Hill Climbing

Simulated Annealing

Positive:

fast

extrememly �exible

easy to implement

Negative:

no guarantee for �nding global optimum

no guarantee of how far the found solution is from the
global optimum.
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Neighbourhood Relation

Binary relation on solutions that satis�es:

connected

neighbours are similar

easy to compute/small modi�cation
objective function has similar value

diameter is small (polynomial of task size)

neighbourhood is small (polynomial of task size)
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Simulated Annealing (SA) Algorithm

simulatedAnnealing(MaxIter ,Gap)
1 s ← randomInitialSolution()
2 best ← s ; step ← 0; change ← step; temperature ← 1
3 while (step < MaxIter ∧ step − change < Gap)
4 do step = step + 1
5 s ′ = randomNeighbour(s)
6 if random(0, 1) < P(s, s ′, temperature)
7 then s = s ′

8 if f (s) < f (best)
9 then best = s ; change = step

10 temperature = 1/
√
step

11
12 return best

transition probability function:

P(s, s ′, temperature) =

{
1 s' better than s

e
−|f (s)−f (s ′)|
temperature else

MaxIter = 100, 000, Gap = 2000 (tuned experimentally)
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Combinatorial Approximation Algorithms: Examples
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Approximation Algorithm

Let Π be a minimisation (maximisation) problem, δ : Z+ → Q+

a function that has values ≥ 1 (≤ 1).

De�nition

An algorithm A is a factor δ approximation algorithm for Π if,
for each instance I , A �nds a feasible solution s for I such that:
objΠ(I , s) ≤ δ(|I |) · OPT (I )
(for maximisation:objΠ(I , s) ≥ δ(|I |) · OPT (I ))

Observation: The closer δ to the value of 1, the better
approximation.
Remark: δ can be also a function of some other parameter than
length of input instance (|I|).
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Example: Approximation of Vertex Cover

The vertex cover problem is an NP-optimisation problem and it
is NP-hard because even its decision version is NP-hard

Obviously, no polynomial-time algorithm that �nds optimum is
known for this problem.

There will be presented a factor-2 (polynomial time)
approximation algorithm for Vertex Cover.
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Lower Bounding

Note: for NP-hard optimisation problems specifying just the
value of OPT is also computationally hard.

Problem: how to provide the approximation guarantee when the
value of OPT is not known?

One of the methods for minimisation problems is the Lower
Bounding technique2:

Find a polynomially computable lower bound for OPT that is at
the same time naturally related to a feasible solution to the
considered optimisation problem.

2for maximisation problems the analogous upper bounding can be applied
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Illustration: Lower Bounding for Vertex Cover

The Matching Problem: Given a graph G = (V ,E ), a subset S
of its edges is called a matching i� no two edges in S are
incident with a common vertex in G .

A matching in a given particular graph G = (V ,E ) is called:

maximal, if it cannot be extended by any edge in G

maximum, if it achieves maximum cardinality over all
matchings in G

Key observation: size of any maximal matching M is a
lower bound for optimal vertex cover (|M | ≤ OPT ) (Why?).

(because at least one endpoint of each edge in any matching S has to be selected

to make vertex cover, otherwise some edge in S would be left uncovered)

On the other hand, selecting both endpoints of each edge
in a maximal matching makes a vertex cover!
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Illustration: Lower Bounding for Vertex Cover
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Illustration: Lower Bounding for Vertex Cover

The Matching Problem: Given a graph G = (V ,E ), a subset S
of its edges is called a matching i� no two edges in S are
incident with a common vertex in G .

A matching in a given particular graph G = (V ,E ) is called:

maximal, if it cannot be extended by any edge in G
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(because at least one endpoint of each edge in any matching S has to be selected

to make vertex cover, otherwise some edge in S would be left uncovered)

On the other hand, selecting both endpoints of each edge
in a maximal matching makes a vertex cover!
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2-Approximation Algorithm for Vertex Cover

Thus, we obtain the following 2-approximation algorithm for
vertex cover:

Find any maximal matching M in the input graph and

output the set W of all matched vertices

Since a maximal matching3 can be found in polynomial time by
a simple greedy algorithm we obtain polynomial-time
2-approximation for vertex cover.

Proof: All edges in the graph are covered by the set W of
picked vertices (any uncovered edge could be added to the
matching M, contradicting its maximality). |M | ≤ OPT

(previous slide) and the found vertex cover W has cardinality
|W | = 2 · |M | so that |W | ≤ 2 · OPT

3maximum matching can be found in polynomial time, too
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What can be improved?

1 Is it possible to improve the approximation guarantee of
the algorithm by a better analysis?

2 Is it possible to use the same lower bounding scheme (i.e.
the size of a maximal matching) to design another
approximation algorithm with a better guarantee?

3 Is there a di�erent lower bounding scheme that can result
in a better approximation guarantee for vertex cover?
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Tight example

Is it possible to improve the approximation guarantee of the

algorithm by a better analysis?

For example, for any complete bipartite graph Kn,n, OPT is n
but the vertex cover found by the algorithm has cardinality 2 · n.
So that the approximation guarantee limit is reached exactly.

Any in�nite family of instances that achieve the approximation
guarantee (also asymptotically) is called a tight example.

Thus, Kn,n is a tight example for the presented 2-approximation
algorithm and the answer to the question is �no�.

Tight examples play a crucial role in designing approximation
algorithms.
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Can factor of 2 be improved with this lower
bounding scheme?

Is it possible to use the same lower bounding scheme (i.e. the

size of a maximal matching) to design another approximation

algorithm with a better guarantee?

The answer to this question is also �no�, since there exists an
in�nite family of instances for which the size of maximal
matching is indeed 2 times smaller than the cardinality of the
minimum vertex cover.

To see this, consider a full graph Kn for odd n. (what is the size
of maximal matching here? Of minimum vertex cover?

(any maximal matching in it has size (n − 1)/2 and minimum vertex cover

has cardinality n − 1)
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Can factor of 2 be improved with another
approximation algorithm?

Is there a di�erent lower bounding scheme that can result in a

better approximation guarantee for vertex cover?

There is no approximation algorithm with constant factor better
than 2 for vertex cover. [Dinur, Safra, 2005]

However, in 2004, an algorithm was found with a bit better
approximation factor of 2−Θ(1/

√
log |V |) [Karakostas 2004]
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Set Cover Problem

Given a universe U of n elements, a family S = S1, ..., Sk of
subsets of U and a cost function c : S → Q+, �nd a minimum
cost subfamily of S that covers all elements of U.

The set cover problem is very important in approximation
algorithms. It is possible to illustrate multiple concepts and
techniques on this problem.

The frequency of an element of U is the number of sets in S
that contain it. Let f denote the maximum frequency of an
element in a given set cover instance.

Various approximation algorithms for set cover achieve either f
or O(log(n)) approximation factor guarantee. Notice that
neither dominates the other for all possible instances.
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Vertex Cover as Set Cover

Vertex cover can be viewed as a special case of set cover.
(Why?)

Let G = (V ,E ) be the input graph in vertex cover. De�ne U = E and for

1 < i < |V | let Si be the set of all edges in E incident with the vertex

vi ∈ V . Thus, any solution to such de�ned set cover instance is a valid

solution to the vertex cover (notice: this is actually an example of

reduction of vertex cover to set cover).

What is the value of f in vertex cover viewed as set cover in the
way described above?

f = 2, since each edge is present in exactly two sets from family S
(represented by its endpoints).

Notice, that the 2-approximation algorithm for vertex cover
achieves exactly the value of f as approximation factor
guarantee.
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Vertex Cover as Set Cover

Vertex cover can be viewed as a special case of set cover.
(Why?)

Let G = (V ,E ) be the input graph in vertex cover. De�ne U = E and for

1 < i < |V | let Si be the set of all edges in E incident with the vertex

vi ∈ V . Thus, any solution to such de�ned set cover instance is a valid

solution to the vertex cover (notice: this is actually an example of

reduction of vertex cover to set cover).

What is the value of f in vertex cover viewed as set cover in the
way described above?

f = 2, since each edge is present in exactly two sets from family S
(represented by its endpoints).

Notice, that the 2-approximation algorithm for vertex cover
achieves exactly the value of f as approximation factor
guarantee.
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Greedy Algorithm for Set Cover

The algorithm iteratively picks the most cost-e�ective set
S ∈ S until U is covered. Let C ⊆ U denote the set of
elements of U already covered in current iteration.

De�ne the cost-e�ectiveness of a set S ∈ S as the averaged cost
of covering uncovered elements: c(S)/|S − C |. De�ne the price
of an element of U as the average cost at which it is covered.

1 C = ∅
2 while C 6= U �nd the lowest cost-e�ectiveness set S , pick

it, and for each e ∈ S \ C set its price(e) = c(S)/|S \ C |,
update C = C ∪ S

3 output the picked sets
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Approximation Guarantee Analysis

Let the order of elements of U covered by the algorithm be
e1, ..., en (resolving any ties arbitrarily) Lemma:

For any 1 ≤ k ≤ n, price(ek) ≤ OPT/(n − k + 1).

Proof: At any moment, all the yet uncovered elements can be
covered by unused sets from the optimal solution at total cost
not higher than OPT. Thus, there has to be at least one such
set with cost-e�ectiveness not higher than OPT/|U \ C |. When
the element ek was covered by the most cost-e�ective set at the
moment, the set of uncovered elements U \ C had at least
n − k + 1 elements, so that:
price(ek) ≤ OPT/|U \ C | ≤ OPT/(n − k + 1)
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O(log(n)) approximation guarantee

The greedy algorithm is O(log(n))-approximation algorithm for
the set cover problem.

Proof: Because the cost of each picked set is distributed over
all newly covered element, the total cost of the picked set is∑n

k=1 price(ek). Due to the lemma, it is upper bounded by
(1/n + ...+ 1/2+ 1) · OPT = Hn · OPT . But the harmonic
number Hn grows assymptotically as the logarithm of n:
Hn = O(log(n)).
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Tight example for Greedy Set Cover Algorithm

Consider the following instance. U = {1, ..., n}, S consists of
n + 1 sets, where Si = {i } and c(Si ) = 1/i , for 1 ≤ i ≤ n and
Sn+1 = U with c(Sn+1) = 1+ ε for arbitrarily small ε > 0.

Obviously, the greedy algorithm will iteratively pick n sets:
Sn, Sn−1, ..., S1 achieving the total cost of
1/n + 1/(n − 1) + ...+ 1 = Hn while the optimal choice is to
pick only Sn+1 with the total cost of 1+ ε.
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Steiner Tree Problem

Given an undirected graph G = (V ,E ) with non-negative edge
costs and with distinguished subset R of required vertices the
goal is to �nd a tree of minimum cost in G containing all
required vertices.

In metric Steiner Tree variant of the problem the graph is
complete and the weights satisfy the triangle inequality: for any
vertices u, v ,w , cost(u, v) ≤ cost(u,w) + cost(w , v).

Theorem: Steiner Tree can be reduced to metric Steiner Tree
with preserving the approximation factor.

This means that metric Steiner Tree is �not easier� than Steiner
Tree problem. In addition, any factor-α approximation
algorithm for metric Steiner Tree problem carries over the
general Steiner Tree problem.
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Proof of the Theorem

Let I be an instance of the ST problem on undirected graph
G = (V ,E ) with costs on edges. The polynomial transformation of I
to I' representing metric ST is as follows. Let G ′ = (V ,E ′) be the
complete undirected graph obtained from G by completing all missing
edges and setting costs on all edges (u, v) as the shortest-path cost
in G from u to v (such a graph is called the �metric closure� of G).
Obviously, it represents metric ST problem. Any cost in G' is not
higher than in G, so OPT (I ′) ≤ OPT (I ). Now, any Steiner tree T'
found on G' can be transformed to a Steiner tree T on G without
increasing its cost in polynomial time as follows. Replace each edge
in T' with the shortest path that it represents, to obtain a connected
graph containing all the required vertices. As it can contain cycles,
�nally, remove some edges to obtain a Steiner Tree.

From now on, it will be enough to assume that the input graph
in ST is complete and metric (since the obtained result can be
easily translated �back� to any arbitrary input graph as above).
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MST-based Approximation Algorithm

A MST on R (required vertices) is a feasible solution to ST
problem. However, since MST is in P and ST is NP-hard, it is
not always the optimal solution. (Example?)

There exists the following lower bound, though:

Theorem: The cost of MST on R is not higher than 2 · OPT.
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Proof of the Lower Bound on ST

Let T be a Steiner tree of cost OPT. Let substitute each edge
in T with two opposite directed edges (keep the weights �xed),
to obtain an Eulerian graph containing all required vertices.
Find in this graph an Euler cycle; it has cost 2 · OPT . Next,
�reduce� it to a Hamiltonian cycle by �short-cutting� (in the
whole input graph) all previously visited or non-required
vertices. Due to triangle inequality, the Hamiltonian cycle has
not higher cost than the Euler cycle. Finally, delete one edge
from it to obtain a tree containing all required vertices and of
cost not higher than 2 · OPT .

The above procedure naturally describes a 2-approximation
algorithm for (metric) Steiner Tree problem.
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Tight example

Consider a complete graph with the set R of n required vertices
and a single non-required vertex. The cost of any edge between
two required vertices is 2 and 1 otherwise. Any MST on R has
cost 2(n − 1) but OPT = n. Thus, it is a tight example
(assymptotically4)

A question:
Why cannot we set the weights to 3 (for example) instead of 2
to obtain factor of 3?

Because, for any value higher than 2 we violate the triangle
inequality.

4i.e. we can obtain any value arbitrarily close to 2 for su�ciently high n



Introduction
to Approxi-
mation

Algorithms

Marcin
Sydow

Introduction

Exponential
Algorithms

Local Search

Combinatorial
Appr. Algs.

Vertex Cover

Set Cover

Steiner Tree

TSP

Linear Pro-
gramming

Rounding

LP-Duality

Primal-Dual
Schema

Dual Fitting

Tight example

Consider a complete graph with the set R of n required vertices
and a single non-required vertex. The cost of any edge between
two required vertices is 2 and 1 otherwise. Any MST on R has
cost 2(n − 1) but OPT = n. Thus, it is a tight example
(assymptotically4)

A question:
Why cannot we set the weights to 3 (for example) instead of 2
to obtain factor of 3?
Because, for any value higher than 2 we violate the triangle
inequality.

4i.e. we can obtain any value arbitrarily close to 2 for su�ciently high n
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TSP and its inapproximability

Given a complete graph G (V ,E ) with non-negative costs on
edges �nd a hamiltonian cycle of minimum possible total cost.

Interestingly, TSP cannot be approximated unless P = NP .

This can be stated more formally as follows:

Theorem: For any polynomially computable function

α : Z+ → Q+, there is no α(|V |)-approximation algorithm for

TSP assuming P 6= NP.
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Proof of inapproximability of TSP

Proof: Assume the opposite. This would lead to a
polynomial-time algorithm for deciding Hamiltonian Cycle (HC)
problem that is known to be NP-complete. To this end, let's
transform HC to TSP as follows. Let G = (V ,E ) represent a
given instance I of HC. To obtain the corresponding instance I'
of TSP, set the cost on each edge from E to 1 and add all the
missing edges with costs of α(n) · n, where n = |V |.
Now, run the polynomial-time α(n)-approximation algorithm on
I'. If the found TSP solution has cost of n, then I has
Hamiltonian cycle. Otherwise, the TSP solution has to use at
least one �heavy� edge, so that its cost is higher than α(n) · n.
Thus, we could use the approximation algorithm to e�ectively
decide the HC problem in polynomial time. But, since HC is
NP-complete, this would mean that P = NP .
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Metric TSP

In the proof of inapproximability, the edge costs violate the
triangle inequality. Otherwise, we obtain the metric variant of
TSP and the following theorem:

Theorem:
For metric TSP, there exists a 2-approximation algorithm.

The algorithm uses the lower bounding technique. More
precisely, it is based on the observation that cost of MST is a
lower bound for TSP (because deleting any edge from a TSP
results in a spanning tree).
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2-approximation algorithm for metric TSP

The algorithm is related with the presented proof for lower
bound on Steiner Tree problem.

Let G be the input graph to the metric TSP problem.

1 �nd a MST for G (call it T)

2 substitute each edge in T with a pair of opposite directed
edges

3 �nd an Eulerian tour T ′ on this graph

4 return the tour that visits vertices of G in the order of their
�rst appearance in T ′, call it C .

Remark: the last step is very similar to the �short-cutting� idea
presented before.
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factor-2 approximation guarantee

The presented algorithm has factor-2 approximation guarantee
for metric TSP.

Proof:
As was stated before, cost(T ) ≤ OPT . Due to the construction
of T ′, cost(T ′) = 2 · cost(T ). Since we consider the metric
variant of TSP, cost(C ) ≤ cost(T ). Thus, we obtain that
cost(C ) ≤ 2 · OPT .
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Tight Example

Consider a complete n-vertex graph G = (V ,E ). Let v ∈ V

and S = V \ {v }. Select a (n − 1)-element cycle in G and set
cost of each edge in it to 1. Also, set the cost of each edge
incident to v as 1. The remaining edges have costs of 2.
Now, the optimal TSP tour has cost of n (traverse the cycle
except one edge and visit v).
On the other hand, if the found MST is �star-shaped� with v in
the center (cost of n), after �short-cutting� it has cost of 2n-2.
Thus, we assymptotically obtain the factor of 2.
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How to improve the algorithm?

There is a cheaper way of obtaining an Euler tour than doubling
the edges of a MST.

Namely, a graph is Eulerian i� all the vertices have even
degrees. Thus, it su�ces to focus only on the set, call it V', of
odd-degree vertices of MST. |V'| is even (since the sum of all
degrees in any graph is even). Now, it is enough to add to the
MST a minimum cost perfect matching (a perfect matching
exists due to evenness) on V'. The result is the demanded
cheaper Eulerian graph.
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3/2-approximation algorithm for metric TSP

Christo�des algorithm:

1 Find MST, T, on G

2 Compute a perfect matching M of minimum cost on the
set of vertices of T that have odd degree.

3 Add M to T to obtain an Eulerian graph

4 Find an Euler tour T' on it

5 The result, C, is the tour that visits all vertices of G in the
order of their �rst appearance in T'.

Interestingly, another lower bound is used to prove the
guarantee of the algorithm.
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Lemma

Let M be a minimum cost perfect matching on an
even-cardinality set of vertices V ′ ⊆ V . Then,
cost(M) ≤ OPT/2 (for TSP problem).

Proof: Let τ be an optimal TSP tour in G and τ ′ be he tour on
V' obtained by short-cutting τ. cost(τ ′) ≤ cost(τ) (triangle
equality). But τ ′ is a union of two perfect matchings on V',
consisting of alternate edges of τ ′ each. The cheaper of these
matchings has cost ≤ cost(τ ′) ≤ OPT/2. Thus, the optimal
matching does not exceed OPT/2.
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3/2 approximation guarantee for metric TSP

Theorem: the presented algorithm has 3/2 approximation
guarantee for metric TSP.

Proof: The cost of the Euler tour is at most the sum of costs of
the MST T (at most OPT) and matching M (at most OPT/2)
found by the algorithm. Due to metric inequality, the
�short-cutting� step does not increase the cost, so that it does
not exceed 3/2 · OPT
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Tight example

(on picture)

The MST found by the algorithm has only 2 odd-degree
vertices. After joining them by the perfect matching that
consists of a single edge with cost bn/2c we obtain a solution of
cost (n − 1) + bn/2c that assymptotically is 1.5 times more
costly than optimum (cost of n).
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Linear Programming
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Linear Programming

Numerous important optimisation problems can be represented
as linear programs (LP).

A linear program in standard form consits of:

a linear objective function to be mimised (or maximised)
and a set of linear inequality constraints.

The decision variables are non-negative.

For example:

minimise
6x1 + 2x2 + 4x3

subject to
2x1 − x2 + x3 ≥ 7

3x1 + x2 + 2x3 ≥ 5

x1, x2, x3 ≥ 0

(3 decision variables, 2 constraints)

Any solution satisfying the constraints is called a feasible

solution
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LP standard form

Demanding that constraints are in the form of inequalities of
the same type (minimisation: ≥, maximisation: ≤) and that
variables are non-negative does not limit the applications of LP
since otherwise it can be transformed to standard form by simple
operations (multiplication by -1 or two inequalities for equality)
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Integer Program (IP)

LP is in P . However, if the variables are additionally required to
be integers, the problem is known as integer programming (IP)
and is NP − hard (e.g. Set Cover can be expressed as IP).

The most-known algorithm for LP is Simplex. Simplex is not
polynomial in worst case, but it is very e�cient in practice. On
the other hand, the ellipsoid algorithm is polynomial but it is
less e�cient on many cases than Simplex.



Introduction
to Approxi-
mation

Algorithms

Marcin
Sydow

Introduction

Exponential
Algorithms

Local Search

Combinatorial
Appr. Algs.

Vertex Cover

Set Cover

Steiner Tree

TSP

Linear Pro-
gramming

Rounding

LP-Duality

Primal-Dual
Schema

Dual Fitting

LP-based Tools

LP theory provides useful tools for designing and analysing
exact and approximation algorithms.

In particular, the following techniques are very useful:

rounding

primal-dual schema

dual-�tting
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Example: Set Cover Problem (Reminder)

Given a universe U of n elements, a family S = S1, ..., Sk of
subsets of U and a cost function c : S → Q+, �nd a minimum
cost subfamily of S that covers all elements of U.

The set cover problem is very important in approximation
algorithms. It is possible to illustrate multiple concepts and
techniques on this problem.

The frequency of an element of U is the number of sets in S
that contain it. Let f denote the maximum frequency of an
element in a given set cover instance.

Various approximation algorithms for set cover achieve either f
or O(log(n)) approximation factor guarantee. Notice that
neither dominates the other for all possible instances.
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Set cover as linear (integer) program

How to express Set Cover in the form of integer program?

minimise ∑
S∈S

c(S)xS

subject to ∑
S3e

xS ≥ 1, e ∈ U

xS ∈ {0, 1}, S ∈ S

Interpretation: decision variable xS == 1 i� S is picked. Each
constraint guarantees coverage of each element e ∈ U.
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Set cover as linear (integer) program

How to express Set Cover in the form of integer program?

minimise ∑
S∈S

c(S)xS

subject to ∑
S3e

xS ≥ 1, e ∈ U

xS ∈ {0, 1}, S ∈ S

Interpretation: decision variable xS == 1 i� S is picked. Each
constraint guarantees coverage of each element e ∈ U.
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LP Relaxation

Consider the above Set Cover IP without the integrality

constraint on variables:

minimise ∑
S∈S

c(S)xS

subject to ∑
S3e

xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ S

(notice that xs ≤ 1 is inherently implied by minimisation of the objective)

The LP problem obtained in this way is called an
LP-relaxation of the original IP problem.
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Rounding
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The idea of Rounding

In general, an optimal solution to LP-relaxation can be better
than optimum for the original integer problem.

Since LP is in P, any LP-relaxation can be e�ciently solved.

On the other hand, a solution to LP-relaxation may be
non-integer (fractional) which does not, in general, represent a
valid solution to the original IP formulation. For example, in Set
Cover, it would mean taking �fractions� of sets.

Thus, to obtain a valid solution to original IP problem, the
optimal solution to LP-relaxation can be rounded to the closest
integer numbers.

Such obtained rounded solution to IP problem is usually only an
approximation of integral optimum.
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Example of solution of LP-relaxation

A solution to LP-relaxation can be better than a solution to
integer program.

For, example, consider the following instance of the Set Cover
Problem:

The universe consists of 3 elements: U = {e, f , g }, and the sets
are as follows: S1 = {e, f }, S2 = {f , g }, S3 = {g , e}, each has
cost of 1. Any integer solution must contain at least 2 of the
sets (with total cost of 2). However, the fractional solution of
taking �half� of each set is a feasible solution to LP-relaxation
(i.e. each elements is fully covered) and has better total cost of
3/2.
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LP-rounding Algorithm for Set Cover

(Let f denote the max frequency of an element) Algorithm:
Find the optimum for the LP-relaxation of the primal
Take all the sets for which its decision variable is at least 1/f

Theorem

The above integer solution is feasible (i.e. covers all elements)

and is a f -factor approximation for Set Cover.

(Proof easy)

(feasibility: uncovered element would contradict
the value of f; factor guarantee: fractional solution is a lower
bound for OPT and it is �multiplied� by f giving a feasible
solution that implies factor guarantee)
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LP-rounding Algorithm for Set Cover

(Let f denote the max frequency of an element) Algorithm:
Find the optimum for the LP-relaxation of the primal
Take all the sets for which its decision variable is at least 1/f

Theorem

The above integer solution is feasible (i.e. covers all elements)

and is a f -factor approximation for Set Cover.

(Proof easy)(feasibility: uncovered element would contradict
the value of f; factor guarantee: fractional solution is a lower
bound for OPT and it is �multiplied� by f giving a feasible
solution that implies factor guarantee)
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Tight example

Let's generalise the view of Vertex Cover as Set Cover as
follows. Consider viewing a set cover instance as a hypergraph
such that each set corresponds to a vertex and each element
corresponds to an incident hyperedge.
Let V1, . . . ,Vk are k sets of cardinality n (each) that are
disjoint. The vertex set of the hypergraph is V = V1 ∪ · · · ∪ Vk

(nk vertices in total) and it has nk hyperedges (each hyperedge
picks one vertex from each Vi ) (a complete k-partite
hypergraph). Notice that f = k in such constructed instances.
Each set has unit cost.
Optimal fractional solution takes 1/k of each of the nk vertices
(sets of incident hyperedges) and has a total cost of n. Thus
the rounding algorithm will pick all the nk sets so that the cost
is k times larger.
(In addition, taking all sets of hyperedges corresponding with
e.g. V1 also gives the cost of n)
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Randomised Rounding of Set Cover

Find optimal fractional solution to a given instance.
Then pick each of the sets with probability equal to the
(fractional) value of the corresponding decision variable.
Repeating the process O(logn) times and selecting a set if it is
choosen at least once gives a Set Cover with high probability
and can be veri�ed in polynomial time.
The expected cost of the cover is
O(logn) · OPTf ≤ O(logn) · OPT (expected value of sum is
sum of expected values, etc.)



Introduction
to Approxi-
mation

Algorithms

Marcin
Sydow

Introduction

Exponential
Algorithms

Local Search

Combinatorial
Appr. Algs.

Vertex Cover

Set Cover

Steiner Tree

TSP

Linear Pro-
gramming

Rounding

LP-Duality

Primal-Dual
Schema

Dual Fitting

Randomised Rounding of Set Cover, cont.

Let x = p be an optimal solution to the linear program. Each
set S ∈ S is picked with probability pS . Denote the picked
family of sets by C .

E [c(C )] =
∑
S∈S

Pr [S is picked ] · c(S) =
∑
S∈S

ps · c(S) = OPTf

The probability that an element a ∈ U is covered is lower
bounded by 1− 1/e.
Explanation: Assume that a occurs in k sets of S. Denote the
corresponding probabilities by p1, . . . , pk . Because a is covered
by fractional solution, p1 + · · ·+ pk ≥ 1. Under such condition,
it is easy to check that the probability of covering an element a
is minimised where all pi are equal to 1/k .

Pr [a is covered by C ] ≥ 1− (1−
1

k
)k ≥ 1−

1

e
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Randomised Rounding of Set Cover, cont.

To complete the set cover, repeat the process dlog(n) times
and compute the union of sets, denote C', where d is selected
so that:

(
1

e
)d log(n) ≤ 1

4n

Hence,

Pr [a is not covered by C ′] ≤ (
1

e
)d log(n) ≤ 1

4n

By summing over all elements in U:

Pr [C ′ is not a valid set cover ] ≤ n · 1
4n
≤ 1

4
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Randomised Rounding of Set Cover, cont.

By E [c(C ′)] ≤ OPTf · dlog(n) and Markov's inequality
(Pr [X ≥ t] ≤ E [X ]/t), we get that probability of �too
expensive� cover is also �small�:

Pr [c(C ′) ≥ OPTf · 4dlog(d)] ≤
1

4

Thus, the union of the two unwanted events is not higher than
1/2 (≤ 1/4+ 1/4)
Hence, the probability of obtaining a �good� cover (feasible and
cheap enough) is:

Pr [C ′ is a valid set cover and hascost ≤ OPTf · 4d · log(n)] ≥
1

2

The fact whether C' is satis�es both conditions is polynomially
veri�able, thus by su�cient repetition (expected number of
repetitions is 2) we obtain the solution.
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LP-duality
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Well Characterised Problems

Consider the decision versions of cardinality vertex cover and
maximum matching:

is the size of the minimum vertex cover less or equal to k?

is the size of the maximum matching greater or equal to l?

Both decision problems are in NP so there exist �Yes�
certi�cates. Do there also exist �No� certi�cates for these
problems (i.e.: do the problems are in co-NP class) ?

The problems that have at the same time �Yes� and �No� certi�cates

are called well characterised and form a class NP ∩ co − NP that

contains P class. It is an open problem whether the containment is

strict (what is widely believed, though).
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Min-Max Relations

As observed before, size of a maximum matching is a lower

bound for the minimum vertex cover size.

Interestingly, for bipartite graphs, the equality holds:

maxmatching M |M | = minvertex cover C |C |

(Koenig-Egervary Theorem)

i.e. the �no� answer to the �rst question is equivalent to the
existence of a (k + 1)-element matching. Analogousy, the
negative answer to the second question is equivalent to the
existence of a (l − 1)-element vertex cover.
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Min-max relations and LP-duality

Min-max relations play a crucial role in designing approximation
algorithms.

Often, they are implied by so-called LP-duality theorem.
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In arbitrary graphs maximum matching can be strictly smaller
than a minimum vertex cover. Examples:

In a cycle of odd length 2l + 1, maximum matching size is
l, but min vertex cover is l+1

Petersen graph has a maximum perfect matching (of size
5) but still needs at least 6-element vertex cover.

Thus, in arbitrary graphs, minimum vertex cover (as NP-hard)
does not have �No� certi�cate assuming NP 6= co − NP .
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Approximate min-max relation for vertex cover

In any graph, the following approximate min-max relation holds:

maxmatching M |M | ≤ minvertex cover U |U | ≤ 2 · (maxmatching M |M |)

what is implied by the presented 2-approximation algorithm for
vertex cover.
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Factor-α approximate No certi�cate

No certi�cate for instances (I,k) of minimisation problems where
k < OPT (I )/α

Vertex cover has factor-2 approximate No certi�cate. (previous
slide)
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Exact Min-max relation for Odd Set Cover

The maximum matching problem, being in P , has �No�
certi�cates in the form of odd set cover.

Theorem:
In any graph, the following min-max equality holds:

maxmatching M |M | = minodd set cover Cw(C )

where, odd set cover C in a graph G = (V ,E ) is a family of
odd-cardinality subsets of V : S1, ..., Sk and a set of vertices
v1, ..., vl so that each edge in E has both ends in Si for some i
or is incident with vj for some j . The cost of covering C is

de�ned as: w(C ) = l +
∑k

i=1(|Si |− 1)/2.
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LP is well characterised

Consider the decision variant of the minimisation LP problem in
standard form:
�Does there exist a feasible solution of objective value at most

k?�

Obviously, any feasible solution is a �yes� certi�cate for some k
in this case.
Interestingly, it is also possible to naturally construct �no�
certi�cates.
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Example of �yes� certi�cate

minimise
6x1 + 2x2 + 4x3

subject to
2x1 − x2 + x3 ≥ 7

3x1 + x2 + 2x3 ≥ 5

x1, x2, x3 ≥ 0

for example: (4,1,1) is a �yes� certi�cate for k = 30
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Negative certi�cates

minimise
6x1 + 2x2 + 4x3

subject to
2x1 − x2 + x3 ≥ 7

3x1 + x2 + 2x3 ≥ 5

x1, x2, x3 ≥ 0

For example, notice that, for this particular program, objective
value is higher than left side of the second constraint. Thus
objective value must be at least 5. It is a lower bound on
optimal solution, thus it is a �no� certi�cate. But 7 is even
better lower bound in this case (�rst constraint).

But how to construct best negative certi�cate more
systematically in general?
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Finding the best lower bound

minimise
6x1 + 2x2 + 4x3

subject to
2x1 − x2 + x3 ≥ 7

3x1 + x2 + 2x3 ≥ 5

x1, x2, x3 ≥ 0

In general, to obtain the best lower bound on objective, try to
maximise the linear combination of constraints without
exceeding the coe�cients in the objective.
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A Dual

minimise
6x1 + 2x2 + 4x3

subject to
2x1 − x2 + x3 ≥ 7

3x1 + x2 + 2x3 ≥ 5

x1, x2, x3 ≥ 0

maximise
7y1 + 5y2

subject to
2y1 + 3y2 ≤ 6

−y1 + y2 ≤ 2

y1 + 2y2 ≤ 4

y1, y2 ≥ 0

The second problem is called a dual to the �rst problem. In this
context the �rst one is called primal.
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LP-Duality in general form

primal:
minimise

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

dual:
maximise

m∑
i=1

biyi

subject to
m∑
i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0, i = 1, . . . ,m
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Basic Properties of Duality

minimisation ↔ maximisation

number of constraints ↔ number of variables

≥ ↔ ≤
Furthermore, a dual of dual is primal.
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Weak Duality

Any feasible solution to the dual is a lower bound of any
feasible solution of the primal.

Theorem

(Weak Duality) If x is a feasible primal solution and y is a

feasible solution to the dual, then

n∑
j=1

cjxj ≥
m∑
i=1

biyi

Proof:
n∑

j=1

cjxj ≥
n∑

j=1

(

m∑
i=1

aijyi )xj =

m∑
i=1

(

n∑
j=1

aijxj)yi ≥
m∑
i=1

biyj

(by feasibility of x,y and their non-negativity)
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(Strong) Duality Theorem

Theorem

Primal program has �nite optimum i� dual program has �nite

optimum. Furthermore, if primal and dual are feasible, their

optimal values are the same. More precisely, for any optimal

solutions x∗, y∗ to primal and dual, respectively the following

holds:
n∑

j=1

cjx
∗
j =

m∑
i=1

biy
∗
i

Corollary

The LP-duality theorem is a min-max relation, thus it is

well-characterised. Feasible solutions to primal (dual) provide

�yes� (�no�) certi�cates to the question �Is the optimum at most

α?�. Thus, LP is in NP ∩ co − NP.
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Complementary Slackness Conditions

A corollary from the strong duality is as follows:

Theorem

If x and y are feasible solutions to primal and dual, respectively,

then x and y are both optimal i� all the following conditions

hold:

(Primal complementary slackness):

For each 1 ≤ j ≤ n either xj = 0 or
∑m

i=1 aijyi = cj
(Dual complementary slackness):

For each 1 ≤ i ≤ m either yi = 0 or
∑n

j=1 aijxj = bi
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Relation of Relaxed and Integer Solutions

0 ≤ dual fractional solutions ≤ OPTf ≤ primal fractional
solutions ≤ OPT ≤ primal integer solutions ≤∞
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Integrality Gap

For a minimisation IP problem Π let OPT (I ) denote its optimal
objective value and OPTf (I ) the optimal objective value for its
LP-relaxation. The following value:

sup
I∈Π

OPT (I )

OPTf (I )

is called the integrality gap of Π

(for a maximisation problem, we take in�mum instead of
supremum)

If optimum of LP-relaxation is integer, we call it an exact

relaxation (integrality gap is equal to 1 in such case)
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Boundedness

Theorem

For primal (P) and dual (D) programs one of the following

cases must hold:

both P and D are feasible

P is infeasible and D is unbounded

P is unbounded and D is infeasible

both P and D are infeasible
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Constructing Dual Program for Set Cover

Relaxation of Set Cover (Primal):

minimise ∑
S∈S

c(S)xS

subject to ∑
S3e

xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ S
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Dual Program for Set Cover?

maximise ∑
e∈U

ye

subject to ∑
e :e∈S

ye ≤ c(S), S ∈ S

ye ≥ 0, e ∈ U
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Dual Program for Set Cover?

maximise ∑
e∈U

ye

subject to ∑
e :e∈S

ye ≤ c(S), S ∈ S

ye ≥ 0, e ∈ U
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Interpretting the Dual for Set Cover

maximise ∑
e∈U

ye

subject to ∑
e :e∈S

ye ≤ c(S), S ∈ S

ye ≥ 0, e ∈ U

It may be viewed as �packing� the elements of the universe U in
order to maximise the �total amount packed� subject to the
constraint that no set is �overpacked� (i.e. the amount packed
into elements does not exceed the cost of the set).
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Covering-packing Pair

Any pair of linear programs where the coe�cients in the
constraint matrix, objective function and right-hand side of
inequalities are non-negative is called covering-packing pair of
LP programs
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Primal-Dual Schema
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Primal-Dual Schema for Exact Algorithms

Primal-dual is a general technique for designing combinatorial
approximation algorithms based on LP-duality theory.

This approach was �rst used in the context of exact algorithms
(matching, max �ow, shortest paths, etc.).

It is based on the fact that optimal solutions to linear programs
satisfy complementary slackness conditions.

In case of exact algorithms it starts with an initial feasible
primal and dual solutions and iteratively satis�es complementary
slackness conditions. When all the conditions are satis�ed, both
solutions are optimal.

The invariant of iterations is that primal is always integral.
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Primal-Dual Schema for NP-hard Problems

In LP-relaxation of an NP-hard problem the optimum is not
integral, in general.

The primal-dual schema for approximation algorithms is usually
adapted so that some complementary slackness conditions are
satis�ed and other are relaxed.

The �relaxed� conditions are controlled by rational factors
α,β ≥ 1; i.e. if primals (duals) are ensured then α = 1 (β = 1).
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Primal and Dual Complementary Slackness
Conditions

Primal complementary slackness conditions:
Let α ≥ 1
for each 1 ≤ j ≤ n: either xj = 0 or cj/α ≤

∑m
i=1 aijyi ≤ cj

Dual complementary slackness conditions:
Let β ≥ 1
For each 1 ≤ i ≤ m: either yi = 0 or bi ≤

∑n
j=1 aijxj ≤ β · bi

Theorem

If x and y are primal and dual feasible solutions satisfying the

above conditions then:

n∑
j=1

cjxj ≤ α · β ·
m∑
i=1

biyi
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Primal-Dual Algorithm

It starts with a primal infeasible solution x and dual feasible y
solution (usually trivial: x=y=0).

Iteratively, feasibility of the primal and �optimality� of the dual
are improved. At the end primal is feasible and all conditions
(for some α,β, speci�ed at the beginning) are satis�ed.

Primal is always improved integrally. The cost of the dual is
always used as a lower bound on OPT, and �nally the α · β
approximation factor is guaranteed.

The alternating iterative �improvements� to primal and dual are
connected: i.e. they suggest each other in an alternating
manner.
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Primal-dual Schema for Set Cover

α = 1, β = f

Primal conditions:

∀S ∈ S : xS 6= 0 ⇒ ∑
e : e∈S

ye = c(S)

(pick only tight sets; do not overpack any set)

Dual conditions:

∀e : ye 6= 0 ⇒ ∑
S : e∈S

xS ≤ f

(since each element is in at most f sets, it is satis�ed trivially)
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Primal-Dual Algorithm for Set Cover

Initialize x=0, y=0
Until all elemenst are covered:
pick an uncovered element e, raise ye until some set becomes
tight
pick all thight sets in the cover and update s
declare all the elements in these sets as �covered�
Output the set cover for x

The above is a f-approximation algorithm for Set Cover.
Proof: all elements are covered, no overpacked sets. Primal and
dual will be both feasible and satisfy the relaxed compl. slack.
cond. with α = 1, β = f that makes f-approximation guarantee.
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Tight Example

S consists of n-1 sets of unit cost: {ei , en} for 1 ≤ i ≤ n− 1 and
one set {e1, . . . , en+1} with cost of 1+ ε (ε > 0). f=n (en is
contained in n sets).
Assume, the algorithm �rst raises yen . When yen is raised to 1
all �pair� sets become tight and are all picked to cover �rst n
elements. Next, yen+1 is raised to ε and the �big� set becomes
tight. Thus, the found solution has the cost of n + ε, while the
optimal solution (single set) has cost of 1+ ε.
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Dual Fitting

Dual �tting is a LP-duality-based technique to support analysis
of combinatorial algorithms.

Assuming the minimisation problem, it helps analysing a
combinatorial algorithm using LP-relaxation of the problem and
its dual.

It aims to show that primal integral solution has objective
function not higher than dual, but the dual is infeasible. By
�nding an appropriate factor, the dual, though, is divided by the
factor to become feasible.

Thus the scaled-down dual is a lower bound for OPT.
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Example: Dual Fitting Analysis of Greedy Algorithm
for Set Cover

Remind the O(log(n))-factor greedy approximation algorithm
for Set Cover.

Dual �tting provides an alternative analysis of that algorithm.

The algorithm de�nes dual variables price(e) for the elements.
The integral cover found by the algorithm has objective value
that is upper-bounded by that dual solution, and the dual is
infeasible.

However, by scaling down the dual: ye = price(e)/Hn we obtain
a feasible dual solution that is lower bound for OPT. Thus, the
algorithm can be now viewed as based on the lower-bounding
technique (proof similar as previously)
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Greedy Algorithm for SC as lower-bounding-based

Remind the 3 questions mentioned previously. In case of the
greedy algorithm, the answer to the question 1 was answered
negatively (tight example was provided). (also, the third
question has negative answer)

We will now show that approximation guarantee based on that
lower-bounding technique cannot be signi�cantly improved: i.e.
the integrality gap has size O(log n)
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O(log n) Lower Bound for Set Cover Integrality Gap

Consider the following instance of Set Cover. Let
n = 2k − 1, k ∈ N+, U = {e1, . . . , en}. For any 1 ≤ i ≤ n,
consider that i is written as a binary k-bit number. It can be
viewed as k−dimensional vector over Z2. Denote it by i. For
1 ≤ i ≤ n de�ne set Si = {ej | i·j= 1} (dot product over Z2). Let
S = {S1, . . . , Sn} and each set is of unit cost.
How many elements does each Si contain?

2k−1 = (n + 1)/2
(why?) (the number of odd subsets of k)
Each element is contained in (n + 1)/2 sets (why?) (symmetry
i-j of the de�nition)
Thus, xi = 2/(n + 1) (for each i) is a fractional solution (to
LP-relaxation of Set Cover). The total cost of this solution is
2n/(n + 1).
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O(log n) Lower Bound for Set Cover Integrality Gap

Consider the following instance of Set Cover. Let
n = 2k − 1, k ∈ N+, U = {e1, . . . , en}. For any 1 ≤ i ≤ n,
consider that i is written as a binary k-bit number. It can be
viewed as k−dimensional vector over Z2. Denote it by i. For
1 ≤ i ≤ n de�ne set Si = {ej | i·j= 1} (dot product over Z2). Let
S = {S1, . . . , Sn} and each set is of unit cost.
How many elements does each Si contain? 2k−1 = (n + 1)/2
(why?)

(the number of odd subsets of k)
Each element is contained in (n + 1)/2 sets (why?) (symmetry
i-j of the de�nition)
Thus, xi = 2/(n + 1) (for each i) is a fractional solution (to
LP-relaxation of Set Cover). The total cost of this solution is
2n/(n + 1).
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O(log n) Lower Bound for Set Cover Integrality Gap

Consider the following instance of Set Cover. Let
n = 2k − 1, k ∈ N+, U = {e1, . . . , en}. For any 1 ≤ i ≤ n,
consider that i is written as a binary k-bit number. It can be
viewed as k−dimensional vector over Z2. Denote it by i. For
1 ≤ i ≤ n de�ne set Si = {ej | i·j= 1} (dot product over Z2). Let
S = {S1, . . . , Sn} and each set is of unit cost.
How many elements does each Si contain? 2k−1 = (n + 1)/2
(why?) (the number of odd subsets of k)

Each element is contained in (n + 1)/2 sets (why?) (symmetry
i-j of the de�nition)
Thus, xi = 2/(n + 1) (for each i) is a fractional solution (to
LP-relaxation of Set Cover). The total cost of this solution is
2n/(n + 1).
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O(log n) Lower Bound for Set Cover Integrality Gap

Consider the following instance of Set Cover. Let
n = 2k − 1, k ∈ N+, U = {e1, . . . , en}. For any 1 ≤ i ≤ n,
consider that i is written as a binary k-bit number. It can be
viewed as k−dimensional vector over Z2. Denote it by i. For
1 ≤ i ≤ n de�ne set Si = {ej | i·j= 1} (dot product over Z2). Let
S = {S1, . . . , Sn} and each set is of unit cost.
How many elements does each Si contain? 2k−1 = (n + 1)/2
(why?) (the number of odd subsets of k)
Each element is contained in (n + 1)/2 sets (why?)

(symmetry
i-j of the de�nition)
Thus, xi = 2/(n + 1) (for each i) is a fractional solution (to
LP-relaxation of Set Cover). The total cost of this solution is
2n/(n + 1).
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O(log n) Lower Bound for Set Cover Integrality Gap

Consider the following instance of Set Cover. Let
n = 2k − 1, k ∈ N+, U = {e1, . . . , en}. For any 1 ≤ i ≤ n,
consider that i is written as a binary k-bit number. It can be
viewed as k−dimensional vector over Z2. Denote it by i. For
1 ≤ i ≤ n de�ne set Si = {ej | i·j= 1} (dot product over Z2). Let
S = {S1, . . . , Sn} and each set is of unit cost.
How many elements does each Si contain? 2k−1 = (n + 1)/2
(why?) (the number of odd subsets of k)
Each element is contained in (n + 1)/2 sets (why?) (symmetry
i-j of the de�nition)
Thus, xi = 2/(n + 1) (for each i) is a fractional solution (to
LP-relaxation of Set Cover). The total cost of this solution is
2n/(n + 1).
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O(log n) Lower Bound on Set Cover Integrality Gap,
cont.

(Total cost of that fractional solution is 2n/(n + 1))
But any integer solution has to pick at least k sets. Assume a
union of p sets where p < k . Let i1, . . . , ip are indices of these
p sets, and let A be a p × k matrix over Z2 whose rows are the
vectors i1, . . . ,ip.
rank(A) < k thus the dimension of its null space is positive, so
it contains a non-zero vector. Call it j. Because A·j= 0, the
element ej is not covered by any of the p selected sets.
Contradiction. (i.e. p ≤ k)
Thus, any integral cover has total cost of at least
k = log2(n + 1). Thus the lower bound for the integrality gap is
(n + 1)/2n · log2(n + 1) > 1/2 · log2n = O(logn)

It can be also shown that Integrality gap of LP-relaxation of Set
Cover is upper bounded by Hn.
Thus the example is a tight bound.
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Example of less obvious approximation factor value

Most of the examples presented before have simple algorithms
(usually greedy) and factor that is a �simple� rational number
(like 2 or 3/2, etc.)

Simple, greedy algorithms do not always lead to such situations.
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Maximum Coverage

Given a universal set U of elements with weights (w : U → Q+),
a family F of subsets of U and k ∈ N+ �nd a subset of F so
that the sum of weights of covered elements of U is maximised.

It is NP-hard.
Greedy algorithm?

In iterations, take the set from F that maximises the total
weight of newly covered elements.
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Maximum Coverage

Given a universal set U of elements with weights (w : U → Q+),
a family F of subsets of U and k ∈ N+ �nd a subset of F so
that the sum of weights of covered elements of U is maximised.

It is NP-hard.
Greedy algorithm?

In iterations, take the set from F that maximises the total
weight of newly covered elements.
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Maximum Coverage

Given a universal set U of elements with weights (w : U → Q+),
a family F of subsets of U and k ∈ N+ �nd a subset of F so
that the sum of weights of covered elements of U is maximised.

It is NP-hard.
Greedy algorithm?

In iterations, take the set from F that maximises the total
weight of newly covered elements.
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Greedy algorithm has 0.683 factor

Theorem

The greedy algorithm for Maximum Coverage has

1− (1− 1
k )

k > (1− 1
e ) approximation factor.
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Greedy algorithm has 0.683 factor

Theorem

The greedy algorithm for Maximum Coverage has

1− (1− 1
k )

k > (1− 1
e ) approximation factor.
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Lemma 1

Let's denote the i-th element picked by the greedy algorithm as
Gi

w(∪li=1Gi ) − w(∪l−1i=1Gi ) ≥
1

k
(OPT − w(∪l−1i=1Gi ))

for 0 < l ≤ k

Proof: The k sets from optimal solution can cover the elements
not covered by the �rst l-1 �greedy� sets (their weight is
OPT − w(∪l−1i=1Gi ). Thus, by the pigeonhole principle, one of
the k sets in the optimal solution must cover at least
1
k (OPT − w(∪l−1i=1Gi )) of uncovered elements. But Gl is picked
as covering most heavy additional elements, so it also does.
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Lemma 2

w(∪li=1Gi ) ≥ [(1− (1−
1

k
)l )] · OPT

for 0 < l ≤ k

Proof (by induction): For l=1 the result holds:
w(Gl ) ≥ OPT/k . For l+1:

w(∪l+1i=1Gi ) = w(∪li=1Gi ) + w(∪l+1i=1Gi ) − w(∪li=1Gi )

≥ w(∪li=1Gi ) +
1

k
(OPT − w(∪li=1Gi ))

= (1− 1/k)w(∪li=1Gi ) + 1/k(OPT )

≥ (1−
1

k
)(1− (1−

1

k
)l ) · OPT +

OPT

k

= (1− (1−
1

k
)l+1) · OPT
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Thank you for attention
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