
A Blueprint for Universal Trust Management
Services

Tomasz Kaszuba Krzysztof Rzadca Adam Wierzbicki
Grzegorz Wierzowiecki

Polish-Japanese Institute of Information Technology
Warsaw, Poland

adamw@pjwstk.edu.pl

November 20, 2008

Abstract

In the future, trust management may become yet another, standard ser-
vice of information security, such as authentication, authorization, privacy
or integrity. For this to happen, it is necessary to define standard primi-
tives of trust management, and agree about what is in common among the
many different applications of trust management studied to date. TheuTrust
project (Universal Trust) is an attempt to move towards the goal of creat-
ing standard trust management services. The scientific goal of the project
is to define, formalize and implement universal trust management methods
and verify their effectiveness. The practical goal of the project is to create
a library of universal trust management methods, algorithms, and protocols.
The trust management library will be developed as an Open Source project.
We encourage the entire community to help with development, testing and
evaluation. In this paper, a blueprint for the design of the uTrust libraryis
presented, along with ideas for an evaluation of universal TM services.

1 Introduction

In open, distributed systems, autonomous users frequentlyhave to make decisions
under uncertainty. The outcomes of their decisions (and thewelfare or utility of
the users) are under risk, because they may depend on actionsof other users, over
which there is no centralized control. The goal of trust management is the support
of decisions and actions of agents (users or programs) in an open, distributed

1



system, under uncertainty and risk. To achieve this goal, trust management uses
various kinds of information allowing users to determine what to expect about the
behaviour of others. There exist many different definitionsand formal models of
concepts used in trust management, as well as many practicaltrust management
methods.

In the future, trust management may become yet another, standard service of
information security, such as authentication, authorization, privacy or integrity.
For this to happen, it is necessary to define standard primitives of trust manage-
ment, and agree about what is in common among the many different applications,
frameworks, architectures and languages of trust management studied to date.
Currently, although there are many practical trust management systems, they are
applied in widely different domains: some of them have centralized components,
others are fully distributed; some use reputation, while others rely on recommen-
dations for transferring or delegating trust. This makes itdifficult to propose a
unified approach to managing trust.

TheuTrust project (Universal Trust) is an attempt to move towards the goal of
creating standard trust management services. The scientific goal of the project is
to define, formalize and implement new, universal trust management methods and
verify their effectiveness. The practical goal of the project is to create alibrary of
universal trust management methods, algorithms, and protocols. This library
will be distributed under public licence, and could also be made available as a Web
Service. All researchers, developers, analysts interested in trust management are
invited to participate in this effort. The trust managementlibrary will be developed
as an Open Source project, and will be made available to the entire community
for testing and evaluation.

In this paper, a blueprint for a library of universal Trust Management services
is presented and discussed.A challenge in the design of the library is too make
it sufficiently general, yet not too abstract. The next section discusses the in-
terfaces of universal TM services. Section 3 presents an architecture of a library
that could implement universal TM services. Section 4 considers the criteria for
the evaluation of such a library. Section 5 concludes the paper.

2 Universal TM Services

When Trust Management (TM) is treated as a service, its interfaces must be suffi-
ciently general to support a variety of applications. In this section (and on Figure
1), we present a generic scenario of an application that usesTM services. We
introduce this scenario on two example applications: an Internet auction system
and a Web service application. In the first case, the ”agent” depicted on Figure
1 is the auction system itself. In the second example, the agent is an entity that

2



invokes the Web service.
The scenario begins with an authentications phase. Nothingis assumed about
the authentication mechanism, although its quality will have an impact on the ef-
fectiveness of various TM algorithms and protocols. In the case of the Internet
auction system, authentication may be based on a simple pseudonymous login
and password. In the case of Web service, there may be certificate-based authen-
tication.

2.1 Universal Encounter Description

An agent that requests the help of TM service passes the description of the future
interaction, called anEncounter. An Encounter [3] models all possible interac-
tions between agents or applications that use TM services.

Figure 1: Universal TM Services and Interfaces

Relevant information about encounters should include agentidentities, con-
text, the actions available to agents and their outcomes.
In the case of an Internet auction, encounter data includes the identity of a user
(buyer or seller), and possible actions: sending of purchased goods, or not send-
ing them; paying or not paying the agreed price. For a Web service, encounter
data includes an identity and the available actions are the following: returning the
correct result of the invocation in reasonable time, returning incorrect results or
delaying the reply. Context data for a Web service may includeparameters of the
Web service that could influence running times.

3



2.2 Results: Trust, Risk, Credibility and Others

TM service returns values of trust, risk, credibility or other information, depend-
ing on the type of invoked service. Note that the library is capable of incorporating
various definitions of these concepts [4]. For example, in our research, we adopt
the definition oftrust as a tolerance of risk. This definition is close to that of
dependability trust [2], but emphasizes that trust and riskcan be values expressed
on the same scale, thus enabling a direct comparison.
For the Internet auction, the TM service can return the reputation represented on a
simple ordinal scale. In the case of the Web service, trust may be not represented
at all. The TM service could return information about the policies that have been
satisfied by available information. In addition, the TM service can return the risk
that a service takes an excessively long time to return a result.

In the case of the Web service, trust may be not represented atall. The TM
service could return information about the policies that have been satisfied by
available information. In addition, the TM service can return the risk that a service
takes an excessively long time to return a result.

2.3 Trust Management as Decision Support

We consider that TM services should be treated as a tool in decision support.
The user must make a decision under conditions of uncertainty or risk. Viewing
TM as decision support emphasizes the fact that the decisionmaking process is
interactive, and the user may influence TM services by specifying her preferences.
Such an approach allows for a more universal specification ofthe TM services’
interface. In the case of the Internet auction, the user could request an escrow
service in the interactive stage, which changes the definition of the encounter and,
consequently, influences the resulting trust.

2.4 Feedback by Universal Proofs

After the encounter, the agent passes feedback informationto the TM system.
To represent this information, the library uses the conceptof a Proof, a universal
representation of an encounter. In the Internet auction, a proof is a history-based
report. In the Web service, a proof, called a ”security token”, delegates trust
obtained in previous encounters with a trust management authority. Proofs can be
even prior trust assumptions. Proofs can also be added at anyother moment. In
the Web service example, proofs could be presented by the agent at the beginning
of the scenario, possibly following a trust negotiation procedure.

4



3 Internal Architecture of TM Services

A library of universal trust management services must be designed so that many
different applications could use common primitives and data. It should be able
to incorporate diverse methods, various algorithms and protocols of trust man-
agement. The challenge in the design of a library of universal TM services is
therefore thediscovery of a common basis for the largest possible set of TM
methods.

Figure 2: Class Diagram of a TM Library

This section and a class diagram on Figure 2 describes thebasic building
blocks required to design various trust management services. We start with an
Encounter and aProof, already introduced in the previous section. AnEncounter
includes information aboutContext, about the participatingAgents, and about the
availableActions and their outcomes. A set of template encounter definitions can
be created in the TM library when a service is developed for a specific application.
Yet, the instance of anEncounter will be received during service invocation. In
the previous section, two examples of encounters were described. In the Internet
auction, anEncounter represents a transaction between a buyer and a seller. In
the Web service, anEncounter is a Web service invocation or an attempt to obtain
”security tokens” from a TM authority.
Note that an Encounter can also be used to model an interaction between two
agents who exchange Proofs. The treatment of exchange ofProofs (for example,
during reporting in an auction service, during trust negotiation, or during gos-
siping of opinions in a P2P application) as anEncounter emphasizes that TM
methods can be used to decide whether to trust the receivedProofs. This form of
trust is sometimes referred to ascredibility [5], which is modeled on Figure 2 as
a class that inherits from Trust. AProof represents any information that can be

5



used by diverse TM methods to compute trust. AProof can store data about past
encounters of the agent running the library, but alsoRecommendations or Reports
coming from other agents. For instance, reputation systemsuse mainly propa-
gated information about history of encounters, modeled asReports. Observations
refer to encounter history, as well, but are obtained first-hand by the observing
agent - such as possibility exists, for example, on Wikipedia which displays his-
tory of entry modifications. On the other hand, TM methods used in Web Services
use proofs that delegate trust, modeled here asRecommendations. It is hard to list
or foresee all kinds of proofs that will be used in a TM servicelibrary; however,
the kinds planned so far should be sufficient to support many divers TM methods.
Proofs are kept in aProof Container that is under a direct control of the agent
running the TM service. However, when additionalProofs are required that are
not available, theProof Container can use theProof Discovery Protocol to search
for new proofs or request them inEncounters from other agents using trust ne-
gotiation. Various TM methods use different kinds of information, such asTrust,
Reputation, or Risk. The algorithms that actually calculate this information are all
modeled asTMAlgorithms. The arguments ofTMAlgorithms are usuallyProofs,
but TMAlgorithms can also use differentParameters such asUser Preferences.
For example, considerRisk, which could depend onRisk Aversion as aParameter.

3.1 Activities of a TM Service Library

This section and Figure 3 showhow do the classes introduced in the previous
section interact with each other.

Figure 3: Activity diagram of a TM Services Library

When a TM service is invoked, it formulates a query for proofs.The query is
passed to theProof Container and can result in the invocation of theProof Dis-

6



covery Protocol. Note that anEncounter can be a result of receiving aProof from
another agent; thisProof is forwarded to theProof Container as shown on the fig-
ure. The next activity of the service library is gathering ofproofs, which can then
- depending on their type - be used to compute various kinds ofinformation, using
the functions stored in the library. The diagram shows the computation of Reputa-
tion, Trust and Risk, emphasizing that information about action probabilities and
action utilities is necessary to calculate Risk.

3.2 Centralized or Distributed Trust Management?

In our opinion, a universal TM library should support both centralized and dis-
tributed operation. In the presented approach,Proofs are received duringEncoun-
ters and stored in theProof Container that is under direct control of the agent
running the TM service library. This does not exclude the possibility of other
agents being present who also have their ownProof Containers. However, agents
can also use TM services provided by one, trusted agent who centrally gathers all
Proofs. If a more distributed approach is used, agents can exchange Reports or
issue Recommendations about other agents, using for examplea P2P gossiping
protocol or a structured P2P overlay, which can be instancesof the Proof Discov-
ery Protocol.

4 Evaluation of Universal TM Services

While many of the TM methods presented in literature have beenevaluated by
their authors, there still is no established and widely accepted method of TM eval-
uation - much less is there any form of a benchmark for TM methods. In the
uTrust project, the development of such evaluation methodsand benchmarks is
planned. Here, some initial ideas are presented.

4.1 Adversary Models and TM Benchmarks

One of the most important aspects of Trust Management evaluation is the resis-
tance of TM methods to adversaries. Since many TM methods - especially all
reputation systems - are based on a majority principle, theyare also vulnerable to
colluding adversaries or to strategies such as discrimination [1]. Here, we discuss
the characteristics of adversaries against which the TM services library should be
evaluated. Adversary models depend on themodel of the environmentin which
TM service works. Such a model states what basic security services are available.
For example, a strong, certificate-based authentication ofall agents makes many

7



schemes of adversary behavior impossible. However, in other models of environ-
ments, only weak, pseudonymous authentication can be available. The environ-
ment model should also specify other relevant aspects of information security, for
instance whether the communication primitives are vulnerable to eavesdropping,
modification, or man-in-the-middle attacks. After determining an environment
model, different adversary models can be chosen. An adversary can be described
by the following three characteristics:

Adversary goals and maliciousness.An adversary could be selfish, pursuing only
her individual gain, or she could be capable of cooperation with other adver-
saries. The kinds of cooperation could be limited (for example, the number
of colluding agents could be limited). An adversary could also attempt to
decrease the welfare of other agents (her competition) or the welfare of all
agents.

Adversary knowledge. An adversary’s knowledge about the TM system can vary.
An omniscient adversary knows all the used TM algorithms andattempts to
exploit their weaknesses; an ordinary adversary uses rather simple, sub- op-
timal strategies.

Adversary resources.Adversaries could have varying amounts of resources of
various types: computational resources, communication resources, or even
control over bots that can act as fake agents. Adversary resources would
be important especially in comparison with the resources available to other
agents who use the TM system.

4.2 TM Service Correctness

A TM service that consistently overvalues, or undervalues trust (or risk) certainly
decreases users’ performance. It is necessary, therefore,to consider TM service
correctness. This could be validated by using special scenarios that can be treated
analytically in order to calculate correct values of trust and risk. Next, various TM
algorithms could be simulated using the considered scenario, in order to see how
close the resulting values are to the correct values of trustand risk.

4.3 Evaluation of Computational Cost

A neglected, yet important aspect of Trust Management evaluation is the inves-
tigation of TM method performance. Many TM methods, in particular crypto-
graphic and Bayesian TM, are rather complex, resulting in a non-negligible com-
putational cost. In the context of distributed systems, some TM methods can also
incur a communication overhead.

8



5 Conclusion

A challenge in the design of a library of universal TM services is too make it
sufficiently general to express most of the TM methods known today, yet not
too abstract, as it would not be possible to implement. In theservice definition,
more abstract interfaces allow an expression of more possible services; yet if these
services have to be implemented, the interfaces must be concrete. In this paper, we
have presented a blueprint of a library for universal TM services that is sufficiently
general to express many of the known TM methods, yet sufficiently specific to
start implementing a library of universal TM services that would also incorporate
completely new TM methods. It is very hard to verify the correctness of the
presented modeling approach. One method would be the development of a TM
Service Library, going through an entire software development cycle. The success
of the library would validate the underlying model. While we start to develop
such a library and make it available as an Open Source projectto the community,
at present the proposed model can only be partially verified by discussions with
other researchers and practitioners in Trust Management. Our works can also be
thought of as a first step in the discussion of the universal Trust Management
services of the future.

References

[1] Chrysanthos Dellarocas. Immunizing online reputation reporting systems
against unfair ratings and discriminatory behavior. InEC ’00: Proceedings of
the 2nd ACM conference on Electronic commerce, pages 150–157, New York,
NY, USA, 2000. ACM.

[2] Audun Jsang, Claudia Keser, and Theo Dimitrakos. Can we manage trust.
In Proceedings of the Third International Conference on Trust Management
(iTrust), Versailes, pages 93–107. Springer-Verlag, 2005.

[3] Lik Mui. Computational Models of Trust and Reputation: Agents, Evolution-
ary Games, and Social Networks. PhD thesis, MIT, 2002.

[4] Sini Ruohomaa and Lea Kutvonen. Trust management survey.In Peter Her-
rmann, Valrie Issarny, and Simon Shiu, editors,iTrust, volume 3477 ofLec-
ture Notes in Computer Science, pages 77–92. Springer, 2005.

[5] Sini Ruohomaa, Lea Kutvonen, and Eleni Koutrouli. Reputation management
survey. InARES, pages 103–111. IEEE Computer Society, 2007.

9


	Introduction
	Universal TM Services
	Universal Encounter Description
	Results: Trust, Risk, Credibility and Others
	Trust Management as Decision Support
	Feedback by Universal Proofs

	Internal Architecture of TM Services
	Activities of a TM Service Library
	Centralized or Distributed Trust Management?

	Evaluation of Universal TM Services
	Adversary Models and TM Benchmarks
	TM Service Correctness
	Evaluation of Computational Cost

	Conclusion

